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Abstract. We study the three-dimensional isotropic harmonic oscillator confined within
spherical impenetrable walls. The potential in the box is of the harmonic oscillator type but
outside the box the potential is infinite. The energy eigenvalues and some position expectation
values are computed with great accuracy for different box sizes; our results are more accurate
than previous calculations. By using the bounded harmonic oscillator wavefunctions as a basis
set we obtain with the variational method the energy eigenvalues of a confined hydrogen atom.

1. Introduction

It is well known that very simple quantum systems such as the hydrogen atom and the three-
dimensional isotropic harmonic oscillator have analytical solutions. However, when these
guantum systems are confined in spherical boxes with impenetrable walls, the solutions of
the Schiodinger equation are not trivial and the energy eigenvalues have not been determined
analytically.

The study of bounded quantum systems is interesting due to the existence of many
problems in different fields of physics that can be considered as bounded quantum systems,
and is interesting as a method to compute the energy eigenvalues of free quantum systems
when the analytical solution is unknown.

Some models of bounded quantum systems have been developed to study atoms and
molecules under high pressures [1-13], near-surface donor states [14], impurity binding
energies in quantum wells [15, 16], the confinement of electron holes in microcrystals [17—
21], nuclear deformations [22], superconductivity [23] and others [12].

In particular the study of the bounded harmonic oscillators is interesting because they
were used in the study of the fundamental mass-radius relation in the white dwarf theory
[24], the specific heat of solids [25] and the magnetic properties of a system of electrons
within a cylinder [26].

On the other hand, the bounded quantum systems are used to obtain the energy
eigenvalues and eigenfunctions of free quantum systems as, for example, the one-
dimensional anharmonic oscillator [27-29], the Morse oscillator [30], the Mitra potential
[31] and the NH inversion spectra [32, 33].

Until now investigation has been mainly devoted to the study the one- and two-
dimensional bounded harmonic oscillators [24—-26, 34—37]. A study of a three-dimensional
isotropic bounded harmonic oscillators was done independently by Marin and Cruz [38]
and by Ferandez and Castro [39]. Marin and Cruz [38] used the direct variational method,
choosing as a trial function the product of the wavefunction of a free harmonic oscillator
times a function,y, such thaty(rg) = 0, wherery is the box radius. The method
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developed by Fedndez and Castro [39] is a combination of the hypervirial theorems
and the perturbation theory; the results obtained by this method were more accurate than
those obtained by Marin and Cruz [38]. However, when the radius of the box increases,
the energy eigenvalues produced by this method become less accurate. In this work we
compute the energy eigenvalues and some position expectation values with great accuracy
for the radii of several boxes.

The present paper is organized as follows. Section 2 introduces the general method for
one-dimensional potentials and in section 3 we develop the particular calculations for the
three-dimensional isotropic harmonic oscillators. In section 4 we compuate, (%) and

(r*). Section 5 is devoted to compute the energy eigenvalues for the 1s and some excited
states for the confined hydrogen atom diagonalizing its Hamiltonian in the bounded oscillator
wavefunctions. Finally, in section 5 the conclusions of this work are given.

2. The method

The method was first introduced by Campoy and Palma [27,28] to solve free quantum
systems, while Aquino [9] showed that the same method can be used for the study of
bounded hydrogen atoms.

We begin with the time-independent Sgétinger equation for an arbitrary one-
dimensional potentiaV (x), which in atomic units can be written as

Y =2[V(x) — €]y @

wheree represents the energy eigenvalue. One of the main features of the method is the
assumption that» must be a function of both position and energy, i.e.

v =1(x, €. (2)
The derivative of equation (1) with respect to the energy is
3" /de = 2[V (x) — €](3y/de) — 2. ()

To confine the system we introduce an impenetrable barrier at pgirgnd therefore the
function ¥ must vanish at this point for the exact energy only, i.e.

¥ (X0, €exac) = 0. 4)

The problem of finding the energy eigenvalues of equation (3) is then reduced to finding the
zeros of the function) at xo. One procedure is as follows. Given an initial approximation
€;, equations (1) and (3) are solved numerically forand 9yr/9¢, respectively, to obtain

¥ (xg, €) and v (xg, €;)/d¢. A correction for the energy is then computed through the
Newton—Raphson method [40-42],

€iy1 =€ — V¥ (xo, €)/[0V (x0, €)/€]. %)

With this new value of the energy we iterate equations (1) and (3) until we obtain the
eigenvalue:; with the desired accuracy.

3. Energy eigenvalues of the isotropic bounded oscillators

The Hamiltonian for the three-dimensional isotropic bounded harmonic oscillator (IBHO),
in atomic units, is given by

H=-iV>+r?/24+V'(r) (6)
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where

Vi(r) = +00 r>ro 7
0, r<ro
ro is the radius of the box in units @fi/mw)/?. Since the problem is separable we solve
the radial equation only.
The method described in section 2, was originally developed for polynomial potentials.
However, we can use it for the IBHOs if we write the corresponding &tihger equation
as follows:

P2y = =2ry F 11+ DY + Y — 2er?y (8)
wherel is the angular momentum of the particle.

The wavefunctionyr, is now developed through a Taylor series expansion around the point
r=a.

V() =) Tila.r) (%)
k

where
Ti(a,r) = W@/ — )t (9b)

which can be evaluated in a very simple way. Tjitl derivative of equation (8) relative
to r, becomes:

[rZI/,(Z)](p) _ _2[r¢(l)](p) +11 + 1)¢(p) _ [,.41)0](17) _ 26[,,21//](17) (10)

where the superscript quantities in parentheses represent derivative orders. Now using the
well known formula for the derivative of a product, together with equationas §9, and
evaluating ina = 0, we finally obtain

Tpr2 = r2[r?Ty_a — 2¢T,]/[(p + 2)(p + 3) — I(I + 1)] with p > 0. (11)

Hence the wavefunction can be calculated directly using.(9rom (%) the following
expression is also obtained:

0y/de =Y 0T, /e = T, (12)
m )4

where T',, denotes the derivative df, relative to the energy, obtained from equation (11),
ie.

Tyro = r2[r?Ty_p — 2eT, — 2T,]/[(p + 2 (p +3) — (I + D)] with p >0 (13)

whereT, and7, are zero forp < 0.

We choosea = 0 because, we know the value of wavefunctions at this point. To
computeyr (rg) and vy (rg)/de simply we evaluate equationsaPand (12) together with
equations (11) and (13) in = ro. From the relations (11) and (13), we can build any
eigenstate, using the initial conditions: foe O (the s-states), we lgt,(0) = 1 (or Tp = 1),

and the value of the first derivativg, (0) = 0 (or 71 = 0), then we obtairly = —er§/3
from (11); for! = 1 (the p-states), we lef,(0) = 0 andy, (0) = 1; and for/ = 2 (the
d-states), we lety,,(0) = 0, ¢, (0) =0, ¥,/ (0) = 1.

Once the energy eigenvalue,, has been obtained, we can compute the expansion
coefficients for the wavefunction by substituting the values,pinto equation (11) and
evaluating?, atr = 1. Thus, we have the following relation:

V() =Y Tulr =1, &)r™. (14)
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Table 1. Energy eigenvalues(rp) for the three-dimensional bounded harmonic oscillator as a
function of the radius of the bok). The energies are in units at» and the radii is in units
of (i/mw)Y/2.

o € P €© Present

Ground states =0,/ =0

0.5 19.774534 19.774 5341792
1.0 5.1313 5.0755820 5.0755 5.0755820152
(%)1/2 3.500 0000 3.500 0000000
15 2.5265 2.5049761 2.5050 2.5049761785
2.0 1.7739 1.7648087 1.7648 1.764 8164387
2.5 1.5567 1.55166 1.5514 1.551421 6545
3.0 1.5105 1.5061 1.506 0815272
4.0 1.5033 1.5000 1.500 0146030
5.0 1.5025 1.5000 1.500 0000036
First excited state =0,/ =1

1.0 10.3188 10.2822  10.282 256 9390
15 4,9169 4.9036 4,9035904194
2.0 3.2514 3.2469 3.246 947 0987
2.5 2.6901 2.6881 2.6881439638
3.0 2.5337 2.5313 2.531292 4666
4.0 2.5015 2.5001 2.5001437781
5.0 2.5012 2.5000 2.500 0000584

2 Using the method described in [38]
b Using the method described in [39]
¢ These values were computed in [38] using the method developed by Ley-Koo and Rubinstein

(3]

A major advantage of this method is that the computation of the energy eigenvalues is very
accurate and fast. Table 1 shows the energy eigenvajuésr the ground state and the
first excited state with nine figures of precision for each value of the (impenetrable) wall
distanceryg.
In table 1 we compare the present calculations with those obtained by Marin and Cruz
[38] and by FerAndez and Castro [39] with different methods. Remtez and Castro [39]
calculated the energy eigenvalues only for the ground state, whereas Marin and Cruz [38]
calculated the first excited state also. The results obtained byafdea and Castro [39]
are accurate only for small values f whereas they become less precise for values of
higher than 2.0 units in length. The results of Marin and Cruz [38] are less precise than
those obtained by Feamdez and Castro [39], but the method is very simple and can be
employed to compute the energy eigenvalues for higher excited states. In the fourth column
of table 1 the calculations are done using the method developed by Ley-Koo and Rubinstein
[3]. Although the method of Ley-Koo and Rubinstein can provide the energy eigenvalues
with any desired accuracy, the computational task is much more intricate than the method
proposed here.
As we mentioned before, with this method we can also compute the excited states. The
results of this computation are shown in table 2, where the energy eigenvalues were
determined for different values af and! as functions of the radius of the bex

It is well known [43—45] that the three-dimensional free isotropic harmonic oscillator
(FIHO) is degenerate, its energy is given By, = (N + g), whereN = 2n + 1. When we
confine this system within of an impenetrable box, this degeneracy is broken; for this reason
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Table 2. Energy eigenvalues,;(rg) of the three-dimensional bounded harmonic oscillator for
different values of: and!/ as function of the radiusp.

o €00(r0) €01(r0) €02(r0)

0.5 19.7745341792 40.428276 4970 66.489 756 5349
1.0 5.0755820152 10.282 256 9390 16.827 777 1098
1.5 2.5049761785 4.9035904194 7.8717304877
2.0 1.764 816 4387 3.246 947 0987 5.010040 8656
2.5 1.5514216545 2.688 1439638 3.9535289034
3.0 1.506 0815272 2.531292 4666 3.598 247 6989
3.5 1.5003995211 2.5029101642 3.5125803181
4.0 1.500014 6030 2.500143 7781 3.5008420738
4.5 1.500000 3041 2.5000038701 3.5000294123
5.0 1.500 0000036 2.500000 0584 3.5000005567
55 1.500 0000002 2.500 0000005 3.500 0000058
6.0 1.500 000 0000 2.500000 0000 3.5000000003

ro =o0® 1.500000 0000 2.500 0000000 3.500 000000

ro €10(ro) €11(r0) €20(r0)

0.5 78.9969211507 119.4024452520 177.6938438082
1.0 19.899696 5018 30.013487 5924 445771712285
1.5 9.135422 0876 13.653 7408930 20.1090029728
2.0 5.5846390790 8.1595288816 11.764 9821223
2.5 4.184 2613183 5.876 767 7360 8.153436 9588
3.0 3.664 219 6450 4.913897 6907 6.4733366162
3.5 3.523302 3363 4.5807989270 5.758692 1635
4.0 3.501 6915385 4.508 3304308 5.5394217970
4.5 3.500062 3121 45004174712 5.502872 2559
5.0 3.500001 2214 4.5000105730 5.500098 7178
55 3.5000000132 4.500000 1425 5.5000017124
6.0 3.500 0000000 4.500 0000008 5.5000000134
rg = oo 3.500 0000000 4.500 0000000 5.500 000000

2 These values correspond to the three-dimensional free isotropic harmonic oscillator computed
by the analytical formulae of [43—45].

it is convenient to label the enerdy,; (rp). We can confirm this statement by looking at the
statesEg,(ro) and Eq1o(ro) in table 2. For small values af, the spectrum is non-degenerate,
whereas for large values @f the spectrum is practically degenerate. This behaviour is
more evident if we observe figure 1, on its left side it shows the energy levels of the
spherical well and on its right side the energy levels of FIHO. The energy levels of BIHO
are between the energy spectrum of the well and the FIHO. The continuous lines show how
the energy levels of BIHO vary between the energy levels of the well and the FIHO as a
function of rp. When the size of the spherical box) diminishes, the energy levels of
BIHO leave to be degenerate and their numerical values increase. An unusual fact occurs
with levels 1h and 3s when, decreases. For some distange, there exists a crossing
point of these two levels, and for smaller values thg# the order of these two levels is
inverted. An analogous behaviour is shown for levels 3p and 1li. We must note that the
order of the spectrum and the energy splitting between levels are functions of the radius of
the impenetrable box{). An estimation of the non-degeneracy is given, for example, by
the splitting AE = E10— Eg. In figure 2, AE is plotted as function ofg. In this figure

we can easily see the above remarks.
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Figure 1. This diagram shows the correspondence of the energy eigenvalues of the BIHO with
the spherical well and the FIHO. For smajlthe energy eigenvalues of the BIHO are very near

to the spherical well, for largey the energy eigenvalues are practically the FIHO. It also shows
the crossing of some energy levels.

The non-degeneracy of the spectrum for small valueg o&n be understood as follows.
For small values ofy we may think of this problem as a particle moving within a spherical
box with impenetrable walls (whose spectrum is non-degenerate [43—45]) plus a harmonic
oscillator's perturbation3, so that the complete problem is non-degenerate. Whes
large the problem may be seen as the FIHO perturbed by a box with impenetrable walls,
thus the spectrum will be very near to the degenerate one, as expected.

4. The position expectation values

The wavefunction obtained by this procedure is not normalized; this fact is not important
for computing the position expectation values because, as Palma remarks [27, 28], these
guantities can be computed easily (without the use of the wavefunction) by using the
Hellmann-Feynman theorem. We have used this approach in a previous work to compute
some position expectation values for the hydrogen atom confined by a box of impenetrable
walls [9, 27]. In the present work we use the direct integration of wavefunctions.

The expectation value for* is defined by

foro Y2rkr?dr
foro Y2r2dr

The integration was done using an extended Simpson'’s rule [40—-42, 46], with this method we

obtained a precision of six figures fer—2), (r?) and (r*); the results of these calculations

rky = with k = integer (15)
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Figure 2. The splitting energyAE (= E19 — Eg2) as functionrg. For small values ofg there
is not degeneration between these two levels, but when the raginsreases, they approach
the degeneration.

are shown in table 3. The behaviour of the expectation values is very similar to that of the
energy eigenvalues; they vary monotonically to the values of the FIHO when the radius of
the box increases. Interestingly enough, there are no position expectation values reported
in previous works [38,39]. Once we have the energy eigenvalues we can compute the
wavefunctionyr (equation (14)) and we can computé) in an analytical way. However,

in this work we have computed numerical values of the integrals, because, in the program
used to compute the energy eigenvalues, the wavefunctions are obtained at the same time,
and they were used immediately to compute the integrals, saving computer time.

As we mentioned before, we can compute the energy and eigenfunctions through
equations (11) and (13), giving initial conditions for the wavefunction and some of its
derivatives at the origim = 0, together with the boundary condition rat= ry. The nodes
of the wavefunction are also automatically determined by these conditions. We do not need
to make any changes to the analytic form of the function equation (11) to compute any
state, as is done in other methods [47,48]. The position of the nodes depends on the size
of the impenetrable box; when the size of the box increases, the nodes of IBHO approach
the position of the nodes of FIHO, and in the limit> oo they are identical. In practice
we may consider that they are equal when the size of therpatisfiesro > 6 au. In
figure 3 six different states are plotted as functionggpfvhere we can observe the position
shift of nodes. The wavefunctions plotted have not been normalized to unity. The states
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Table 3. Position expectation valugs—2), (~2) and (+*) as a function of the radius of the box

(ro)-

ro 3 r?) )

n=0[1=0

0.5 35.6703626921 7.0633325319-2 7.1240518727 E 3
1.0 9.024 1006941 0.2804491919 0.112597 9005
2.0 2.6958517746 0.996 925 7335 1.4783049734
3.0 2.024 417 3259 1.461864 1057 3.478551 3901
4.0 2.000077 6828 1.499 804 6846 3.747 914 0456
5.0 2.0000000216 1.4999999191 3.749998 7701
5.5 2.000 000 0007 1.499 999 9996 3.749 9999994
rg = 00? 2.000 0000000 1.500 0000000 3.750 000 0000
n=0[=1

0.5 15.604 5790517 9.3625935728-2 1.0871505434 E- 2
1.0 3.9247112835 0.372964 4642 0.1727284387
2.0 1.0801733970 1.394 4839053 2.461796 8195
3.0 0.694 710 7566 2.3374249913 7.377 6557684
4.0 0.666 856 9583 2.498 236 0443 8.728 6620820
5.0 0.666 666 7627 2.499998 7516 8.749979 2031
5.5 0.666 666 6675 2.499 999 9866 8.7499997431
rog = 00? 0.666 666 6667 2.500 000 0000 8.750 000 0000
n=1[=0

0.5 75.009927 0868 8.017 671 9300-2 1.0977905107 E- 2
1.0 18.773803 8158 0.3212800381 0.175854 6450
2.0 4.774023 4899 1.3136755498 2.837 6786605
3.0 2.3631605071 2.848 497 3047 12.360529 1432
4.0 2.006 1556647 3.481 6007196 18.5015111189
5.0 2.0000058010 3.499975 3635 18.749555 38
6.0 2.0000000 3.500 000000 18.75000000

ro = 0o 2.0000000 3.500 000000 18.750000 00
n=21=0

0.5 114.4593926675 8.1932300984-R 1.1809302000 E 2
1.0 28.6235155711 0.3281011648 0.189197 6805
2.0 7.1867091622 1.3356905995 3.087 9809920
3.0 3.2367117630 3.1784975904 16.4114516391
4.0 2.0952211738 5.1872651591 40.659421 4306
5.0 2.0003673908 5.498260 7986 45.713491 7561
6.0 2.000 00006 5.499 999 6086 45.7499895219
rg = 00? 2.00000000 5.500 000 0000 45,750 000 0000

a8 These values correspond to the three-dimensional free isotropic harmonic oscillator computed
by the analytical formulae of [45].

are labelled with the quantum numbersand!, thus the state 10 means the functibiy,
etc. The wavefunctions are compressed to the inner of the spherical box, but the symmetry
of the wavefunctions and the number of nodes are unaltered.

5. The confined hydrogen atom in terms of BIHO states

For several years the FIHO basis set has been used to solve a great variety of problems of
more complexity [49] such as, hydrogen atoms, hydrogen molecules, helium atoms, etc. An
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Table 3. (Continued)
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ro (r=?) (r?) 4

n=11=1

0.5 28.8493991689 8.6829286126-R2 1.199162 7564 E- 2
1.0 7.2212001399 0.347621 3689 0.192061 3526
2.0 1.8386097252  1.408622 1564 3.113726 3025
3.0 0.8803218876 3.200689 7343 15.257 3570373
4.0 0.6744177243 4.4205930777 28.567 3426176
5.0 0.666 6805327 4.499799 2081 29.746 0739542
6.0 0.6666666678 4.499999 9758 29.749999 3858
ro = oo? 0.666 666 6667  4.500 000 0000 29.750 0000000
n=0,1=2

0.5 11.4712803274 0.1096559301 1.39815753RE
1.0 2.8781443188 0.4374847350 0.222 697 2275
2.0 0.7628914153 1.676456 3054 3.306 502 7796
3.0 0.4383009920 3.0190423538 11.657 3115440
4.0 0.4005308571  3.4906181724 15.623363 2297
5.0 0.4000004600 3.499988 6907 15.749795 2218
6.0 0.4000000002  3.499999 9920 15.749999 8331
ro = oo? 0.4000000000  3.500 0000000 15.750 000 0000

2 These values correspond to the three-dimensional free isotropic harmonic oscillator computed
by the analytical formulae of [45].

important question is the following. Is the IBHO basis set as good for complex bounded
problems as the FIHO for free problems? We are going to give a partial answer by means
of an example.

Some years ago Moshinsky [49] calculated the ground-state energy for the free hydrogen
atom using a basis set of free harmonic oscillator states. In this section we are going to
show that using this simple idea it is possible to do a similar calculation for the confined
hydrogen atom in spherical impenetrable walls using the basis set of BIHO states.

In non-relativistic quantum mechanics we may write the Hamiltonian for the bounded
hydrogen atom as follows:

p/2

H’Z%—FV(}’,) (16)
where
V) = —ez/r’ ?f r<ro
400 if r >rg

ro is the spherical impenetrable box radius. It is convenient to transform equation (16)
adding and subtracting the harmonic oscillator term of frequendgr r < ro:

1 1 1
H = = p?+ Zmw?'? — e?/r — Zmw?r. a7)
2m 2 2

Making the change of variable’ = ar, wherea = ,/%, and the energy equivalence
hw = % the Hamiltonian equation (17) is now

4
, — me
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Figure 3. We plot the radial wavefunctions for the ground state and the first five excited states,
as function of the box radiug. The wavefunctions plotted have not been normalized to unity.
When the radiusyg, is small the wavefunctions are compressed, but wigencreases they are
almost the same that the free wavefunctions. The number of nodes of each wavefunction is the

same for every

H = Hpjp —

value ofy.
1 1,
F 2

(19)

The term H,;,, is the Hamiltonian of the bounded isotropic harmonic oscillator (BIHO)
equation (6). The eigenstatgs of equation (19) have definite m thus we may expand
them in terms of the BIHO statag,;,,.

Y =" |nim).

To obtain the energy eigenvalues of (19) it is sufficient to diagondlize’im|H |nlm) ||

(20)
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Table 4. Energy eigenvalueg,; (in atomic units) for confined hydrogen atom as function of
the number of quant&/, for ro = 2, 4,5 Bohr.

Eoo E10 E20 E3o0 Exao Eso

—0.0611

—0.0839  3.4057

—0.1087 3.3776  9.4056

—0.1159 3.3486 9.3708 17.9153

—0.1199 3.3400 9.3398 17.8766 28.9173
—0.1217 3.3349 9.3300 17.8450 28.8763 42.4034
—0.1228 3.3325 9.3240 17.8345 28.8448 42.3612
Exact —0.1250 3.3275 9.3142 17.8161 28.8135 42.2967

NoOUORAWNRS | =
I

1 —0.3783

2 —0.3970 0.8374

3 —0.4642 0.6220 2.3658

4 —0.4642 0.4455 2.0791 4.3978

5 —0.4732 0.4404 1.8981 4.1417 7.0545

6 —0.4751 0.4277 1.8957 3.9913 6.8500 10.3535
7 —0.4776 0.4270 1.8823 3.9908 6.7159 10.1843
Exact —0.4833 0.4202 1.8727 3.9665 6.6907 10.0406

1 —0.3784

2 —-0.3974  0.8287

3 —0.4694 0.5778 2.2370

4 —0.4705 0.2957 1.7409 3.7837

5 —0.4857 0.2231 1.2669 3.1064 5.4940

6 —0.4858 0.1579 1.1483 2.5655 4.7643 7.5027
7 —0.4895 0.1523 1.0708 2.4625 4.2573 6.8101
Exact —0.4964 0.1413 1.0532 2.3823 41176 6.2548

for fixed [, m. The matrix elements are

(n'Im|H|nlm) = EppoSun — 5(0'Im|r?nim) — (n'Im|1/r|nim). (21)

The termE,;, is the energy eigenvalue for the BIHO and some of these values are given
in table 2; the calculation of the position expectation values was explained in section 4.
We are interested only in the spherical symmetric states, i.e. 1s, 2s, 3s, etc. For
this reason we may fixed = m = 0, thus we need to calculate only the matrix
|| (n’'O0|H|n00) ||. For up to N quanta we need to diagonalize(éN + 1)(%N +1
matrix, withn = 0,1, ..., %N. The results of our calculation foy = 2, 4,5 bohrs are
given in table 4. In this table the ground state and few exited states are reported.
From table 4 we obtained good convergence for the ground state when the number of
guanta was 12; the excited states also converge fast for small valugs idbwever, for
ro > 5 the ground state converges first, than the excited states, as in the case of the free
hydrogen atom.
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6. Conclusions

In a previous work the present method was successfully applied to the problem of a hydrogen
atom confined by spherical impenetrable walls [9]. We use the same method to solve the
IBHO for different radii of the boxes. We found the energy eigenvalues with a higher
precision than previous works, and we also found the correct eigenfunctions, this last
assertion is based on the fact that the energy eigenvalues and position expectation values
approach the corresponding quantities of the free harmonic oscillator wtiroreases.

The main advantage of the present method is the possibility of computing the energy
eigenvalues, eigenfunctions and the position expectation values with high accuracy for
ground and excited states, at a low computational cost.

The calculations resulting from this method could be taken as reference values for future
comparisons.

For wavefunctions we can conclude that the total effect of the confinement by
impenetrable walls, is a compression of the wave function to the inner of the impenetrable
box, but the shape of the confined function is very similar to that of the free function, and
the number of nodes of the confined function is the same than the free function. One point
we must emphasize, not considered in previous works [38, 39], is the following fact: the
IBHO, unlike the FIHO, does not have degeneracy in energy, i.e. the impenetrable walls
break only the degeneracy in energy, but the symmetry of the problem remains unaltered.

The study of bounded harmonic oscillators is interesting by itself, but it is more
important, because it opens the opportunity to solve more complex systems using the IBHO
basis set. As an example we solved the confined hydrogen atom.

In the variational calculation of a confined hydrogen atom we can see that the ground
state and excited states converge almost at the same time, butyinereases the ground
state converges first as in the case of a free hydrogen atom. We conclude, at least for this
problem, that the IBHO basis set is as good (for bounded systems) as the FIHO basis set
(for free problems).

The method described in this work can be used in other one-dimensional potentials, such
as the rotational Morse potential or polynomial potentials with several wells. At present we
are working on these problems and future results will be published elsewhere.
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